The Comparison of Biofuel Systems (COBS) site has 24 0.4-acre research plots equipped with a drainage water monitoring system installed in 2008 (Figures 1 and 2). Plots have <1 percent slope with Nicollet and Webster soils. Tile lines are installed at a depth of 3.5 feet spaced 45 feet apart. Management practices are evaluated for their impact on nitrate-N and dissolved phosphorus (P) loss and crop yield. To quantify the impact of these practices, researchers are monitoring subsurface drainage volume and collecting flow-proportional water samples for nitrate-N and dissolved P analysis (Figure 3). The 30-year average annual rainfall at COBS is 35.8 inches. The average tile drainage flow from 2010-2016 is 9.0 inches.

At COBS, multiple management practices have been examined for their impact on N and P loss and crop yield:

Crops: Continuous corn, corn-soybean rotations, perennial prairie

Management Practices: Rye cover crop, no-till, split N application, stover removal, prairie biomass harvest

Key Findings from 7 Years of Research (2010-2016):
- Plots planted to corn received two split applications of injected N in the spring as 32 percent liquid urea ammonium nitrate (UAN), with the second application rate based on the soil nitrate-N values and the late spring soil nitrate-N test. Fertilized prairie plots received broadcast UAN. Average N fertilization rates for the years 2010-2016 were 162, 162, 176, and 77 lb/acre/yr for corn in corn-soybean rotation, continuous corn, continuous corn with cover crop, and fertilized prairie, respectively. Results are shown in Table 1.
• Flow-weighted nitrate-N concentrations were 0.1, 0.6, 9.3, 10.4, 13.1, and 13.2 mg/L for prairie, fertilized prairie, continuous corn with cover crop, corn, soybeans, and continuous corn, respectively.

• Annual nitrate-N loads averaged over seven years were 0.6, 0.8, 12.1, 15.7, 18.3, and 22.3 lb/acre for prairie, fertilized prairie, continuous corn with cover crop, continuous corn, soybeans, and corn, respectively (Figure 4).

• Despite higher nitrogen application in the continuous corn with cover crop treatment (176 lb N/acre 7-year average), the nitrate-N loss was less than under the continuous corn with no cover crop (162 lb N/acre 7-year average).

• Continuous corn with residue removal and corn-soybean rotations without residue removal produced similar mean annual flow-weighted nitrate-N concentrations, ranging from 6-18.5 mg/L from 2010-2013. In comparison, continuous corn with residue removal and a cover crop resulted in significantly lower mean annual flow-weighted nitrate-N concentrations of 5.6 mg/L averaged over the four years.

• In bioenergy-based corn systems with 50 percent stover harvest, the subsurface drainage nitrate-N losses were often above the US-EPA drinking water standard of 10 mg/L with exception of when a winter cover crop was used.

• Bioenergy-based mixed prairie systems with annual aboveground biomass harvest after senescence substantially limited nitrate-N losses to subsurface drainage even when synthetic N fertilizer was applied (Figure 4).

• Annual flow-weighted total reactive P concentrations (<0.04 mg/L) and annual loads (<0.13 lb/acre) were not significantly affected by cropping systems or rotational phases over a four year study.

<table>
<thead>
<tr>
<th>Table 1. Nitrogen application rates from 2010-2016.</th>
</tr>
</thead>
<tbody>
<tr>
<td>---</td>
</tr>
<tr>
<td>Corn in Corn-Soybean Rotation</td>
</tr>
<tr>
<td>Continuous Corn</td>
</tr>
<tr>
<td>Continuous Corn with Cover Crop</td>
</tr>
<tr>
<td>Fertilized Prairie</td>
</tr>
</tbody>
</table>

Acknowledgements
We thank Michael Fiscus and the staff of the Iowa State University Agricultural Engineering and Agronomy Research Farm for substantial logistical support, and many students for technical assistance in the field and laboratory. Funding for this research was provided by the ConocoPhillips Company, Iowa State University College of Agriculture and Life Sciences, USDA-National Institute of Food and Agriculture, USDA-National Agriculture Statistics Service Carbon Cycle Science Program, Iowa State University Department of Agronomy, and Leopold Center for Sustainable Agriculture.

For more information contact:
Dr. Matt Helmers
Dean’s Professor and Extension Agricultural Engineer
Dept. of Agricultural and Biosystems Engineering
Iowa State University
Phone: 515-294-6717
Email: mhelmers@iastate.edu

Iowa State University Extension and Outreach does not discriminate on the basis of age, disability, ethnicity, gender identity, genetic information, marital status, national origin, pregnancy, race, religion, sex, sexual orientation, socioeconomic status, or status as a U.S. veteran. (Not all prohibited bases apply to all programs.) Inquiries regarding non-discrimination policies may be directed to Ross Wilburn, Diversity Officer, 2150 Beardshear Hall, 515 Morrill Road, Ames, Iowa 50011, 515-294-1482, wilburn@iastate.edu.