
Mapping API’s: Leaflet - Introduction to Legends

Welcome to the Essential ArcGIS Task Sheet Series. This series supplements the Iowa State University Geospatial
Technology Training Program short course series. The task sheets are designed to provide quick, easy instructions for
performing mapping tasks.

This task sheet builds off of Mapping API’s: Leaflet - Circles and Circle Markers PM2082-15b. The code for that task sheet
can be found in the ISU Geospatial Technology Program GitHub page at https://github.com/ISUEOGTP/GISTaskSheets
within the Leaflet-Tutorials repository and is named LegendLeaflet.html. This task sheet will give you an introduction
to generating legends with Leaflet.

1. Introduction and Setup

a.	 First, you will need to start with a basic leaflet map setup.
Reference the task sheet: Mapping API’s: Leaflet - Getting
Started PM2082-14r to learn how to get this set up, or get
the starter code from our GitHub page at https://github.
com/ISUEOGTP/GISTaskSheets/blob/master/Leaflet-
Tutorials/helloLeaflet.htm.

b.	 Instead of using an external JSON data file for this
project, the data will be added directly after the map
constructor and referenced using a variable called
myPoints. Each point contains three values, a number
(0-25), latitude, and longitude.

c.	 Next, add two arrays. The first array called breaks,
contains values defining the minimum value for each
corresponding label. The second line of code is a variable
named labels. This array contains the category names for
sorting data. In this case there are three values, good, fair
and poor. The order in which these appear is important
as we will next associate ‘good’ with high values and poor
with low values.

d.	 Add the function getColor to set the color for each
marker based on a value in the data. In this function the
data value is passed as variable d and tested to see if it is
greater than or equal to (>=) the value stored in positions
0,1 or 2 of the breaks array. If the value meets the criteria
the color identified is returned. You will see that there is
no breaks[2] in the function because all values that are
not greater than breaks[1] use the default color red. Note
that HTML colors or HEX colors can be used.

e.	 Next, add a for loop to extract the data from myPoints
and test to see what color to apply based on the value
stored in position [i][0] of the myPoints data array. Note:
the radius style option is commented out. Uncommenting this
will display the circles in various sizes. The number is also
displayed in a pop-up.

//data
var myPoints - [
				 ["22",42.99497,-93.50808],
				 ["20",42.10269,-93.23696],
				 ["15",43.2,-93.1],
				 ["19",42.98585,-94.50659],
				 ["12",42.93163,-93.81726],
				 ["5",42.5183,-93.89],
				 ["14",42.42079,-93.5783],
				 ["23",42.08414,-93.96632],
				 ["6",42.51285,-93.0],
				 ["14",42.013997,-93.635769],
];

//used by color and legend functions to define
data breaks
var breaks = [17, 14, 0];
var labels = ['good', 'fair', 'poor'];

//set color of marker function
function getColor(d) {
		 return d >= breaks[0] ? 'green' :
		 d >= breaks[1] ? "#ffff00" :
		 "red";
}

for (var i = 0; i < myPoints.length; i++) {
			 marker = new L.circleMarker([myPoints[i]
[1],myPoints[i][2]], {
			 //radius: myPoints[i][0]/2,
			 fillColor: getColor(myPoints[i][0]),
			 color: "#000",
			 stroke: true,
			 weight: 1,
			 opacity: 1,
			 fillOpacity: 0.9
})
.bindPopup("Value: "+myPoints[i][0])
.addTo(map);
}

Bailey Hanson bahanson@iastate.edu, 515-520-1436 or Professor Christopher J. Seeger, ASLA, GISP cjseeger@iastate.edu,
515-509-0651 for more information about the Geospatial Technology Program. This task sheet and more are available at
www.extension.iastate.edu/communities/gis

Iowa State University Extension and Outreach does not discriminate on the basis of age, disability, ethnicity, gender identity, genetic information, marital status,
national origin, pregnancy, race, religion, sex, sexual orientation, socioeconomic status, or status as a U.S. veteran. (Not all prohibited bases apply to all programs.)
Inquiries regarding non-discrimination policies may be directed to Ross Wilburn, Diversity Officer, 2150 Beardshear Hall, 515 Morrill Road, Ames, Iowa 50011, 515-
294-1482, wilburn@iastate.edu.

Contact:

PM2082-15oAugust 2015

2. Add CSS Styling

a.	 Data points should now appear on the map. To add a
legend you first must provide some CSS code to define
the appearance of the Legend elements. Add the CSS
code to the right. The .Legend class sets the text color of
the label and line weight. .legend i defines the size of the
color boxes and .info defines the white legend box.

3. Add Legend Control

a.	 The final step is to add the legend control. This starts
by creating a leaflet control and specifying where it will
be displayed on the map. Positions can be bottomright,
topright, bottomleft or topleft.

b.	 Create the legend function shown in the code to the
right. This function will create a new DIV on the map
that uses the legend and info class items defined in the
CSS. The label and breaks arrays are used next along
with a call to the getColor function to create legend
boxes of the correct color.

c.	 Add the legend to the map

4. Categories and Customization

a.	 The use of the label and breaks arrays are not necessary
for creating a legend if the breaks are hard-coded into the
getColor function or if the JSON data already includes
category labels that accompany the values.

a.	 The code example in this task sheet however was
designed to accommodate dynamic changes to the break
values. For example, replace var breaks = [17, 14, 0];
with var breaks = [12, 6, 0]; and the map will appear
with different colors. This particular example uses only
three breaks, but with a little bit more customization you
could make the entire getColor function dynamic and
allow for additional break values as well as color options.

.legend {
		 line-height: 18px;
		 color: #555;
}

.legend i {
		 width: 18px;
		 height: 18px;
		 float: left;
		 margin-right: 8px;
		 opacity: 0.9;
}
.info {
		 padding: 6px 8px;
		 font: 10px/18px Arial, Helvetica, sans-serif;
		 background: white;
		 background: rgba(255,255,255,0.8);
		 box-shadow: 0 0 15px rgba(0,0,0,0.2);
		 border-radius: 5px;
}

var legend = L.control({position: 'bottomright'});

legend.onAdd = function (map) {
		 var div = L.DomUtil.create('div', 'info
legend');

		 //loop through items and generate legend
		 for (var i = 0; i < breaks.length; i++) {
				 div.innterHTML +=
					 '<i style="background:' +
getColor(breaks[i]) + ' "></i> ' +
					 labels[i] + (breaks ? ' ' + '
' : '');
		 }
		 return div;
};

legend.addTo(map);

